Convexity and the Riemann C ; - Function

نویسنده

  • GEORGE CSORDAS
چکیده

The convexity properties of the kernel O. Also, lower bounds for the Tunin differences involving the moments of <ll(t) are established. The paper concludes with several questions and open problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Convexity and Quadrature Rules for the Riemann–stieltjes Integral

We develop Trapezoid, Midpoint, and Simpson’s rules for the Riemann-Stieltjes integral, the latter two being new. These rules are completely natural when the notion of relative convexity is used. Mathematics subject classification (2010): 65D30.

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

Subconvexity for the Riemann Zeta-function and the Divisor Problem

A simple proof of the classical subconvexity bound ζ( 1 2 + it) ≪ε t1/6+ε for the Riemann zeta-function is given, and estimation by more refined techniques is discussed. The connections between the Dirichlet divisor problem and the mean square of |ζ( 1 2 + it)| are analysed. 1. Convexity for the Riemann zeta-function Let as usual (1.1) ζ(s) = ∞

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007